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Abstract. We discuss determination of jumps for functions with generalized
bounded variation. The questions are motivated by A. Gelb and E. Tadmor [1],
F. Moricz [5] and [6] and Q. L. Shi and X. L. Shi [7]. Corollary 1 improves the
results proved in B. I. Golubov [2] and G. Kvernadze [3].

§1. Introduction

Set T := [—m,m). Let L(T') denote the set of all periodic and integrable
functions with period 27. For any f € L(T) denote by

a > a > .
(1.1) Sifl(x) == ?0 + ZAk(x) = ?O + Z(ak cos kx + by, sin kx)
k=1 k=1
and

(1.2) S[f](z) := ZZ;;(SL’) = Z(ak sin kx — by, cos kx)

k=1 k=1
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2 L. HU and X. L. SHI
its Fourier series and conjugate Fourier series, respectively, where

1 /7 1 (7
a = — f(t)cosktdt and by := — f(t) sin kt dt,
™ J_x T J—n

k=1,2,3,.... The n-th partial sum of the series (1.1) and (1.2) are denoted
by

Sn(f,x):= % + ZAk(x) and  Sp(f,z) = Z;lvk(x),
k=1 k=1

respectively. It is well known that the jump of a function f € L(T) at its
simple discontinuity z = £ can be determined in terms of the spectral data
ar and by, k=1,2,3... . Indeed, in 1920 F. Lukacs [4] proved that if the
finite limit

(1.3) de(f) = lim [f(§+1) — f(€—1)]

t—0t

exists at some point £ € (—m,w|, then

(1.4) fim _T9n(F:6)

n— o0 Inn

= de(f).

(see A. Zygmund [10].)

The convergence in this way, however, is at the unacceptably slow rate
of order O(1/Inn). To improve the convergence rate, in 1999 A. Gelb and
E. Tadmor [1] introduced the method of concentration factors.

Let o be a continuous function on [0, 1]. Denote

S =00 (5) Ao

k=1

If the limit (1.3) exists at £ and lim,, §Z(f, &) = de(f), then we call

Gl
ol =
n k=1,...,n; n=1,2,...

the concentration factors of f at the point &.
A. Gelb and E. Tadmor [1] established a criterion of concentration factors.
Later Q. L. Shi and X. L. Shi [7| proved the following improvement.
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CONCENTRATION FACTORS FOR FUNCTIONS 3

THEOREM A. Assume £ € T and o € Lip,[0,1]. Then for any f € D,
the factors {a(%)
and only if

Lo(x
(1.5) /Oa()d:r:—ﬂ',

x

are concentration factors of f at x = & if

ceey

where Dg¢ denotes the set of functions of f € L(T) that satisfy

(i) de(f) ewists,
and
(11) f(£+t)*f(§*t)*d§(f) c L[O, 7T],

It is not hard to see that a BV function is not necessary to satisfy the
condition (ii). The aim of the present paper is to establish a criterion of
concentration factors for functions which have some kind of BV property. To
state the results we introduce some definitions first.

Let A = {\,} be a non-decreasing sequence of positive numbers that sat-
isfy E:{g 1/A, = oo. Suppose that f is a real function defined on an interval
[a,b]. {I,} will denote a sequence of non-overlapping intervals I,, = [an, by],
[an, bu] € [a,8] and write f(I,) = f(ba) — f(an).

A function f is said to be of A-bounded variation (ABV [a,b]) if

“+o0

sup Z }f(]n)|/)\n < 00.

In} n=1

For A = {n}, i.e.

+o0o
sup Y | f(In)] /n < oo,
{I"} n=1
we say that f is of harmonic bounded variation (HBV [a, b]) .
The concept ABV was introduced by D. Waterman [9] in 1972. Later, in
1985 the second author generalized this class to ABMV.
A function f is said to be of A-bounded mean variation (ABMYV [a, b]) if

+oo
sup 3 pr, (f)/An < o0,

{In} n=1

where
i, (f) = ’;' /I NIC R AT L i) da.

1 In| J1,,
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For A = {n}, i.e.

sup Zu[n f)/n < oo,
{In} =

we say that f is of harmonic bounded mean variation (HBMYV [a, b]) . It was

proved in [8] and [9] that if A, T oo then BV & ABV G ABMV.
In Section 3 we will prove the following.

THEOREM 1. Assume that o € Lip,[0,1] satisfies fol %I) dx = —m and
EeT. If fe L(I)NHBMV [£ —6,& + 6] for some § > 0 and the limit de(f)
exists, then {a( )}k; Loms me12,.. OT€ concentration factors of f at the
point &.

In Theorem 1 the class HBMV is best possible in the following sense.

THEOREM 2. If HBMV & ABMV, then the conclusion of Theorem 1 is
not true when we replace HBMV [ — §,& + 6] by ABMV [£ — §,& + 4],

REMARK 1. The function

-----

1, if 1/2<x <,

1/[Inz|, if 0<z=<1/2
f(z) = .

0, if —m<2=Z0;

flz+2m), if z€R.

has bounded variation on T', but it is not in Dy.
REMARK 2. Let V},, p 2 1, denote the set of all functions f that satisfy

o (St <o

I, C(—m,m]

where the “sup” is taken over all non-overlapping intervalsI,. B. I. Golubov
[2] proved that if f € V},, p 2 1, then the identities

(—=1)"(2r + D

(16) lim SRS (1,6 P = de()
and

— T+1 o~
(17 tim TG 0 = ag(p)
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hold. Later, G. Kvernadze [3] proved (1.6) and (1.7) for f € HBV. Since
Vp, & HBV, Kvernadze improved Golubov’s results. The identities (1.6) and
(1.7) can be rewritten as one formula, i.e.

n
— PA(£) —
(1.8) Jim —E > KPA(E) = de(f),
k=1
where p is any natural number. By our Theorem 1 we can prove that the
identity (1.8) holds for any positive p, i.e. we have the following

COROLLARY 1. Assume that £ € T, f € L(T) and the finite limit (1.3)
ezists. If f € D¢ or f € HBMV [€ —§,& + 8] for some § > 0, then (1.8) holds
for any p > 0.

The proof of Corollary 1 will be given in Section 3.

REMARK 3. Indeed we proved that for different p, all (1.8) are equivalent
to each other (see Lemma 5). Therefore (1.6) and (1.7) are equivalent.

REMARK 4.If f € ABV then the finite limit (1.3) exists everywhere. But
this proposition is not true for the class ABMV (see D. Waterman [9] and
X. L. Shi [8]). Hence in Theorem 1 and Corollary 1 we assume that the limit
(1.3) exists.

Based on F. Moricz’s results in [5] and [6], Q. L. Shi and X. L. Shi [7]
introduced the concept of “concentration factors of Abel-Poisson type”. Let
i be a continuous function on [0, c0) that satisfies (0) = 0 and

| ()| :O((l—i—x)M), as x — 00,
where M = 0. For f € L(T), the series

PE(fx) =Y p((1—r)k) Ap(z)r®,  0<r<1,
k=1

is convergent everywhere. If the limit (1.3) exists at& and

lim PH(f,€) = de(f),

r—1-0

then we call

(1.9) {M( (1- T)k) }k:LQ,...; 0<r<1

the concentration factors of Abel-Poisson type for f at the point £&. For x > 0
denote by L, (x) the Lipschitz norm of p on [0, 2], i.e.

L,(x):= sup

+ sup |u(y)|.
y,2€[0,x], y#z

0=Zy<z

p(y) — p(z) ‘
y—z
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Let Q denote the set of all functions p on [0,00) that satisfy the following
conditions:

(i) p(0) =0,
(iv) there exists M = 0 such that

(1.10) Lyz)=0(1+2)"), as z— 0.

Q. L. Shi and X. L. Shi proved the following;:

THEOREM B. Let £ € T, f € D¢ and p € Q2. Then the factors (1.9) are
concentration factors of Abel-Poisson type for f at the point £ if and only if

) ad M((l—r)k:) %
(1.11) Tﬂrio;kr .

In Section 3 we will prove the following:

THEOREM 3. Assume that p € Q satisfies (1.11) and £ € T. If f € L(T)
NHBMV [ —6,£ 4 6] for some § > 0 and the limit d¢(f) exists, then the fac-
tors (1.9) are concentration factors of Abel-Poisson type for f at the point &.

THEOREM 4. If HBMV & ABMV, then the conclusion of Theorem 2 is
not true if we replace HBMV [£ — §,& + d] by ABMV [£ —0,£ + 0].

§2. Some lemmas

We need several preliminary lemmas.
LEMMA 1. If f € Lla,b] then

b
lim / ft)eM dt = 0.
A—oo Jq

This is the well-known Riemann—Lebesgue lemma.
LEMMA 2. Let k,n 21 and 0 <t < m. Then

(2.1)
1—cosk:t_ t—2tan%

1
=0(k*), —————2=0(1), = Inn —Ink) = O(1).
tan § (k°8), 2t tan § (1), nZ(nn nk) (1)

The proof of this lemma is easy, so we omit it.
LEMMA 3. Under the assumption of Theorem 1, o has the following prop-
erty:
o(t)=0(t),  (t—0).
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LEMMA 4. For f € HBMV [a,b] and 0 < § < b — a, denote

A(f,la,a+d)) —supZmn

{I"nl

where the “sup” is taken over all non-overlappingl, C la,a+ ). If f is right
continuous at xr = a, then

5l—i>r(§1+ A(f la,a+4]) =

(see X. L. Shi [8]).
Let

oo
T = g tn,
n=1

and p > 0. Denote
n
p._ P P
™= Zk k.
k=1
We have the following
LEMMA 5. If p1,p2 > 0 and p1 # po then

(2.2) lim 77 =1

of and only if

(2.3) lim 772 = 1.

n—oo

PRrROOF. It is enough to prove one direction, i.e. (2.2) implies (2.3). If
(2.2) holds, then by Abel transformation

P2 _ Z EP2—P1LP1y
-
n np2 k

n—1
k=1

7j=1
p n—1 )
2 o - 2 _
e D[R = (k)PP R W”m PLpPLTPL
k=1
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By (2.2) we have 7' =1+ o(1). Hence

— - D2
2.4 Th? = kp2 P (k4 )PP EPY 4 l)
(24 <p1np2 kzzz ) ] D1

n—1
+ kp2p1_k+1p2plkp1 p201>:I+I,
(s 3o 7 s PPt o) <11

say. Since
kP2PL — (K 4 1)p2—p1 — O(km—m—l),

for positive po we have

n—1
1
(2.5) L=— > O(EP 1 o(1) + o(1) = o(1).
k=1
Next let us consider I:
n—1
P2 P2
2.6 I = kP2 — (K 4+ 1)P2 |1+ =1
(2.6 = o o [ (e ) 4
n—1
S k1P (k1 — ]
P 1
n—1
p2 | P2 E A\
=2 E+1)P2 (11— (—— !
plnpz plnPQ Z< + ) < (k_|_1)

20(1)+pf’§m Z(k+1)p2 <k+1 <k2)>l:l+o(1).

By combining (2.4)—(2.6) we obtain (2.3). O
LEMMA 6. Let 7:= ) > | tn. Assume that pn € Q and satisfies (1.11). If

(2.7) nangoT nlerolo - Z kty, =1,
k=1
then
(2.8) Q(r) = Zu((l —7)k) ter® — —7wl as r—1-0.
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CONCENTRATION FACTORS FOR FUNCTIONS 9

PROOF. By Abel transformation

Q(T)Zi [u((l—r)k:) p((1—r)(k+1)) r] —_

k E+1

k=1

By (2.7), 7l =1+ &, as n — oo with &, = o(1), hence

r| krk

o (@ =nk)  p(A=r)(k+1))
(2.9) Q(r)—l;[ - T

kepr® = Q1 + Qo

- T

p(@=rk)  p((L=r)(k+1)
k k+1

00
>
k=1

Under the assumption on p we see that

o((1-nr)k if (1-r)k=<1,
(210)  p((=1)k) = {OE(l - r)M>kM) if (1-r)k21,

and

(2.11) p((1=r)k) —p((1=r)(k+1))
o((1-r), if (1-r)ks1
o((1—r) @ —r)MEMY, if 1-r)k21

If we write

1 1

p((1—r)(k+1))
k41

+ (1-— 7‘)] k,

then by (2.10) and (2.11) we obtain

_Jo((r—=n), if (1—-r)k=<1,
PR o - MEM), i (1 - Pk 2 1
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Thus we have

(2.12)

\er=0<<1—r> > rek|>+0(<1—r>M“ > kM|ak|>:o<1>,
-]

k<[ el
as r — 1 — 0. Next we calculate QJ1. It is not hard to see that
213) Q=13 [w((1=)k) (= )k + 1) ]t
k=1

o0

) (K 1 1—
—I—lz k—|—1+ k“—lzu r) ) F—= _nl+0(1),

as 7 — 1 — 0. By combining (2.9), (2.12) and (2.13) we obtain (2.8). O

§3. Proofs of the results
3.1. PROOF OF THEOREM 1. Set

™=

2w

¢(x) = {0, if = 0:
¢(x+2m), if z€R.

if 0<xz<2m,

and g(z) = de(f)o(x — £). Write f(x) = g(z) + h(x). Then we have

S2(f,€) = 52(g,€) + Sg(h, €).

It is clear that

oy "ok Lo(a
3.1)  57(9,6) = —dif) () +o(1) = _dg(f)/o Qdm—i—o(l),

k T T

and hence lim,,_, 375(9, §) = de(f). Therefore what we need to show is

(3.2) lim S (h,&) = 0.

n—oo
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By Abel transformation

(33)  Sg(he) = kzl (a (i) o (T)) S, €) + 0 (1)Sn(h, ).

1

Let us estimate @(h, €) first. By the Dirichlet representation of the conjugate
partial sum we have

—~ 1 /7 1—coskt 1 .
(3.4) Si(h, &) = _W/o e(t) (Ztané + 5 sin kt> dt,

where ¢¢(t) = h(§ +t) — h(§ —t). Write

o m/k cos m
(3.5) Sk(h,g)—_jrfo Wt)( 1 kt) P Y L O

T 2tan% t T ﬂ/than%

L[k ae(t) 1 (" 1 1
— dt + — t - = kt dt
+7r/7r/n 2tan% +7T/0 wg()(Qtané t>COS

1 s t 1 ™ 1
+/ wfwcosk;tdt—/ e(t) - sinkt dt
m w/k t T Jo 2

=L+ 1+ I3+ 14+ I5s + Is.
By Lemma 1, we obtain

(3.6) Jim (|Z] +|1s]) = 0.

By Lemma 2,

1| [k t —2tan § cos kt
(3.7) uly_ﬂ/ 1/J§(t)< Al g Co° )dt
0

2ttan%
1 [k 1—coskt|  |t—2tan}
0

T 2tan % 2t tan %

Since d¢(h) = 0, we have

(35) lim [ (1) =0,

Acta Mathematica Hungarica, 2007
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hence it follows from Lemma 2 that

w/k

w/k
3.9)  |hl=o) [ 0@ dt+o(1)/ O(1) dt = o(1),
0 0

as k — oo. Thus we obtain

(3.10) / 41 / " () dt
m/n 2tan2 m/n Qtan%

1 (t)
/ 5700314:75dt—i-0(1),
™ 7/k t

as k — oo. By combining (3.3) and (3.10) we get

(3.11) %(h,g):i( <> a<k+1>) LT D),

P 7/n 2tan 5
+n71 k k+1 7T/k ¢§ ) "
ol 2
pt n n /n 2tan2
n—1
+Z o E k+1 1 cosktdt
—t n ™ 7 /k
n—1
k k+1 o(1) [T e(t)
i I 1) —
2 () (5 ))0<> I

& t
+U7T/ wét()cosntdt—ko(l):J1+J2+J3+J4+J5+J6+0(1).

By (3.8) and Lemma 3 we get
(3.12)

1 7r
Ji+ Js = U(n) ve(t) dtzO(i) o(lnn) =o(1) as n — oo.

T W/than%

By (3.8) for € > 0 there exists 71 > 0 such that Wf(t)‘ <eg if0O<t<m.
Thus
(3.13)

|Ja| < Z O< >//n‘¢£t(t)}dt+ Z O(:L)/:/kOig)dt

k<m/m m/mSk<n /n
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—o(1)+0() 3 o(i)mZ.

m/mSk<n
It follows from (2.1) and (3.13) that Jo = o(1) + O(e), and hence

(3.14) lim J = 0.

n—oo

In order to estimate J3 and Js we consider the integral
7T t
(3.15) Py = / wi&() cos kt dt.
k

By Lemma 4 there exists n € (0,71) such that

(3.16) A(e(t),[0,m]) <e.

Set ko = [Z] and for k = ko + 1
1 (kn
Now

n t
(3.17) Py ::/ Mcosk:tdt —I—/ velt )cos kt dt
r/k t n t

m k (2j+1)7/k
= Z T /( e(t) cos kt dt

= 2j—1)/k

@i+)r/k /1 k
/ ( - > e (t) cos kt dt
— Jej-va/k \1 (25—

n
+/ d}é cos ktdt+/
2m+1)m/k n

= Py1 + Pio + Pr3 + Pyy.

m

+
J

cos kt dt.

Denote I, = [(23‘;1)#7 (23‘;1)717 then

k (2j+)7/k

7T/( Ye(t) cosktdt| =

2j—1)m/k

(3.18)

2
]

(1/’5 (t) —j ) cosktdt

13
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14 L. HU and X. L. SHI
= 2N1j,k W&)
where ¢, = |I o fI B Ve (t) dt. Hence by (3.18) we get
gy
EMES s
j=1

Since for t € [w, W} we have

1 k 1
t_(2j—1)7r_0<kt2)'

Therefore

" /
3.19 Po=o0(21 Wf()‘dt:oy

2
kK)ot
It is evident that
(3.20) Pus + Pra = o(1),
Hence by (3.15)—(3.20),
(3.21) <oy “If W) L o(1) = O(e) + o(1).
7=1

It follows that

| J3] <

> (o) () m
> (+(0) - ()7

e <i> o(1) + znj 0 <71L> (0(e) +o(1)) = 0(e) + o(1),

k<ko k2ko

as n — 00. Therefore we have

(3.22) lim J5 = 0.

n—oo
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It follows from (3.21) that we also have

(3.23) lim Jg = 0.

n—oo

By combining (3.11), (3.12), (3.14), (3.22) and (3.23) we obtain (3.2). O

3.2. PROOF OF COROLLARY 1.Set p =1 and o(x) = —mwx. Then o sat-
isfies the assumptions of Theorem 1. By Theorem 1 we get (1.8) withp = 1.
By Lemma 5 we see that this is equivalent to (1.8) with arbitraryp > 0. O

3.3. PROOF OF THEOREM 2. In [3], Kvernadze constructed an example
f € CNABV such that

. |Sn(£,0)*FY)]
lim sup —————

n—00 n2r+l > 07

hence (1.6) does not hold. Since ABV C ABMV, this example works for
proving Theorem 2. We omit the details. [

3.4. PROOF OoF THEOREM 3. By Corollary 1, (1.8) holds forp = 1. Then
by Lemma 6 we get the conclusion of Theorem 3. O

3.5. PROOF OF THEOREM 4. The same counterexample as Theorem 2
can be used to prove Theorem 4. We omit the details. [

References

[1] A. Gelb and E. Tadmor, Detection of edges in spectral data, Appl. Comput. Harmon.
Anal., 7 (1999), 101-135.

[2] B. I. Golubov, Determination of jump of a function of bounded p-variation by its
Fourier series, Math. Notes, 12 (1972), 444-449.

[3] G. Kvernadze, Determination of jumps of a bounded function by Its Fourier series,
J. Approz. Theory, 92 (1998), 167-190.

[4] F. Lukacs, Uber die Bestimmung des Sprunges einer Funktion aus ihrer Fourierreihe,
J. reine angew. Math., 150 (1920), 107-122.

[5] F. Méricz, Determination of jumps in terms of Abel-Poisson means, Acta Math. Hun-
gar., 98 (2003), 259-262.

[6] F. Méricz, Ferenc Lukécs type theorems in terms of the Abel-Poisson mean of conju-
gate series, Proc. Amer. Math. Soc., 131 (2003), 1234-1250.

[7] Q. L. Shi and X. L. Shi, Determination of jumps in terms of spectral date, Acta Math.
Hungar., (2006), to appear.

[8] X. L. Shi, On ABMV Functions with some applications to the theory of Fourier series,
Sci. Sinica. Ser., A28 (1985), 147-158.

[9] D. Waterman, On covergence of functions of generalized bounded variation, Studia
Math., 44 (1972), 107-117.

[10] A. Zygmund, Trigonometric Series, Cambridge University Press (Cambridge, UK,
1959).

Acta Mathematica Hungarica, 2007



